ANALYSIS OF CAUSES OF FAILURES IN INFORMATION STORAGE SYSTEMS OF DISTRIBUTED RELIGIOUS ORGANIZATIONS
Keywords:
network protocols, multipath redundancy, anomaly detection, machine learning, fault detection, data storage, fault localization.Abstract
The article is devoted to the development of a probabilistic approach to assessing the fault tolerance of distributed data storage models on the servers of major religious organizations. A review of existing software tools for monitoring the health of data storage systems in religious organizations was carried out, the approaches used for data collection, processing and storage were identified, the tools used to identify failures were described, and the features ro is listed.
References
D. A. Patterson, G. A. Gibson, R. H. Katz, A case for redundant arrays of inexpensive disks (RAID). ACM SIGMOD Record. 1988. Vol 17(3). pp. 109-116.
P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, D. A. Patterson. RAID: HighPerformance, Reliable Secondary Storage. ACM Computing Surveys. 1994. Vol 26(2). pp. 145-185.
S. Ghemawat, H. Gobioff, S.-T. Leung. The Google File System. ACM SOSP. 2003. 15 p.
B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas, C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, 114 S. Mainali, R. Abbasi, A. Agarwal, M. F. ul Haq, M. I. ul Haq, D. Bhardwaj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran, K. Manivannan, L. Rigas. Windows Azure Storage: A Highly Available Cloud Storage Service with Strong Consistency. Proceeding SOSP. 2011. pp. 143-157.
S. A. Weil, S. A. Brandt, E. L. Miller, D. E. Long, C. Maltzahn. Ceph: a scalable, highperformance distributed file system. Proceedings OSDI. 2006. pp. 307-320
Hewlett Packard Enterprise Development LP. Can Machine Learning Prevent Application Downtime? // URL: https://cdm-cdn.nimblestora ge.com/2017/08/23090218/Can-Machine-LearningWhite-Paper-1708-FINAL-print.pdf).
Wang D. Artificial intelligence makes flash storage predictive // URL: https://www.hpe.com /us/en/insights/articles/artificial-intelligence-makesflash-storage-predict
Higley L. Storage analytics: Can we put any more lipstick on that pig? Available: https://cloud. kapostcontent.net/pub/3da21605-fc17-4712-991a-1c49dc77b871/mfx131e-pc-mon-130-higleyl.pdf?kui=xxP HjAO870Nzv0HTEjftEw (Accessed: 10.04.2019).
Gopisetty S. Evolution of storage management: Transforming raw data into information. IBM Journal of Research and Development, 2008, Vol. 52, No 4.5, Pp. 341—352.
Успенский М.Б. Обзор подходов к обнаружению сбоев в системах хранения данных // Научно-технические ведомости СПбГПУ. Информатика. Телекоммуникац
Дадамухамедов, А. И. (2017). Развитие национальной сети и корпоративной сети (на примере сети ІХ). Актуальные научные исследования в современном мире, (3-2), 133-137.
Alimjon D, Al-Dabbagh KA, Shnishil AT, Altememy HA, Jawad IA, Jabbar AM, et al. Investigation of the Effects of Cognitive Rehabilitation Training on the Memory Deficits of Adults with Attention Deficit Hyperactivity Disorder: Effects of cognitive rehabilitation training on the memory deficits of ADHD. Int J Body Mind Cult. 10(4).
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.