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One-variable function optimization is one of the simplest optimization problems. 

However, it occupies an important place in the theory of optimization. The reason is 

that one-parameter optimization problems are often encountered in engineering 

practice, and in addition, complex multidimensional widely used in optimization 

problems. 

The function F(x) is very complicated in practice, and it may be impossible to find 

its extremum analytically by taking its derivative, or it may require a lot of time. In 

practical problems, in many cases, it is enough to find the exact solution with some 

error. Therefore, it is an urgent problem to find a solution with sufficient error in 

numerical methods.Let's say that it is required to find the minimum of the function 

f(x) in the interval [a;b]. Optimization methods using only the values of the function 

f(x) are called 0-order methods. These include: 

1) General search method; 

2) method of unimodal functions; 

3) The method of dividing the interval into two equal parts; 

4) Golden forty method; 

 

All of these methods are based on reducing the interval in which the function is 

optimally searched, and are called interval exclusion methods. 

If the function f(x) is smooth enough, for example, it has continuous first and second 

order derivatives, then the speed of convergence of numerical methods can be 

increased. 
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Optimization methods that use 1-2- ,…….. order derivatives of the function are 

called 1-2-,….. order methods, respectively. 

 

Suppose the function f(x) is twice differentiable. We know that the minimum 

condition of such a function is: 

                                               𝑓′(𝑥∗) = 0 

  A condition is a sufficient condition. 

So, 𝑓′(𝑥∗) = 0we solve the equation numerically. We give the initial approximation 

of  (we choose it as close to the solution as possible) and at this point we expand 

it to the Taylor series. 

𝑓(𝑥) ≈ 𝑓(̅𝑥) = 𝑓(𝑥𝑘) + 𝑓
′(𝑥𝑘)(𝑥 − 𝑥𝑘) +

1

2!
𝑓′′(𝑥𝑘)(𝑥 − 𝑥𝑘)

2 

If it is  𝑓′′(𝑥𝑘) ≠ 0, then f(x) has a unique stationary point. To find this point, we 

set  𝑓′(𝑥)  the derivative equal to zero: 

 

𝑓′(𝑥∗) = 0; 𝑓′(𝑥)2 (𝑓(𝑥) + 𝑓′(𝑥)(𝑥 − 𝑥𝑘) +
1

2!
((𝑥𝑘)(𝑥 − 𝑥𝑘)

2)
′
) = 0 

=> 0 + 𝑓1(𝑥𝑘) +
1

𝛼
∗ 2𝑓′′(𝑥𝑘)(𝑥 − 𝑥𝑘) = 0 =>  𝑥 = 𝑥𝑘 −

𝑓′(𝑥𝑘)

𝑓′′(𝑥𝑘)
   

we accept the found solution as the k+1-th approach to the minimum of x, as a result 

we get the following iterative formula: 

 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓′(𝑥𝑘)

𝑓′′(𝑥𝑘)
 

Note: The formula given above is used to solve the equation f(x)=0 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓′(𝑥𝑘)

𝑓′′(𝑥𝑘)
 

 

Not to be confused with Newton's formula. 

 

This algorithm has 2 disadvantages: 

1) 𝑓′(𝑥) = 0the equation can determine not only the minimum, but also the 

maximum. 

2)𝑓(𝑥)  the model function may be significantly different from the function f(x) 

being optimized. 
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3)Xk+1-xk- the step can be very large. 

That is why we check the condition  f(xk+1)<f(xk)  at each step to check that we are 

going to the minimum.If this condition is met, then we will proceed to the next step. 

If f(xk+1)<f(xk)  and 𝑓′(𝑥)(𝑥 − 𝑥𝑘) < 0 , then f(x) must decrease fromxk to xk+1  at 

the beginning of the function. can be found, for example. 

                     𝑥𝑘+1
′ =

𝑥𝑘+1+𝑥𝑘

2
 

(∗) as can be seen from the formula,  𝑓′(𝑥𝑘)(𝑥 − 𝑥𝑘)the expression is negative only 

and only    𝑓′′(𝑥𝑘)  >0 .This means that an optimal step direction is guaranteed to 

obtain a Newton step. 

On the other hand, if 𝑓′′(𝑥) < 0    and  𝑓′(𝑥𝑘)(𝑥 − 𝑥𝑘) >0, then f(x) increases at the 

beginning when passing from xk to xk+1, so the step should be taken in the opposite 

direction. 

As a criterion for stopping iteration (approximator) in optimization. 

        |
𝑓′(𝑥𝑘+1)

𝑓(𝑥𝑘)
| < 𝜀 

The condition can be accepted, 𝜀  - certainty given in advance. This method is called 

Buton or Newton-Raphson method. In some problems, it is difficult to get the 

derivatives of the function f(X), in such cases, Newton's method can be modified. 

For this, we choose the initial approximation Xk and the step h. Let's look at the 

points Xk-h, ,xk, xk+h. In that case, the derivatives f'(X) and f''(x) can be replaced by 

the following approximate formulas. 

𝑓′(𝑥𝑘) ≈
𝑓(𝑥𝑘+ℎ)−𝑓(𝑥𝑘−ℎ)

2ℎ
     or   𝑓′(𝑥) = 𝑙𝑖𝑚

ℎ→0

𝑓(𝑥+ℎ)−𝑓(𝑥−ℎ)

ℎ⋅2
 

 

 

=>Leaving the lim difference, we get the following approximate formulas: 

𝑓′(𝑥𝑘) ≈
𝑓(𝑥𝑘+ℎ)−𝑓(𝑥𝑘−ℎ)

2ℎ
; 

𝑓′′(𝑥𝑘) ≈
𝑓′(𝑥𝑘+ℎ)−𝑓

′(𝑥𝑘−ℎ)

2ℎ
=

𝑓(𝑥𝑘+ℎ)−𝑓(𝑥𝑘)

ℎ
−
𝑓(𝑥𝑘)−𝑓(𝑥𝑘−ℎ)

ℎ

2ℎ
=> 

𝑓′′(𝑥𝑘) ≈
𝑓(𝑥𝑘+ℎ)−2𝑓(𝑋𝑘)+𝑓(𝑋𝑘−ℎ)

2ℎ2
  

In that case, if we put (*) in the above formula, we will get the iterative formula as 

a result: 
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𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘+ℎ)−𝑓(𝑥𝑘−ℎ)

𝑓(𝑥𝑘+ℎ)−2𝑓(𝑋𝑘)+𝑓(𝑋𝑘−ℎ)
 *h 

This formula is called Cauzi Newton or Newton's modified method. 

For example: it is required to find f(x) =x3-x2 → 𝑚𝑖𝑛 𝜀 = 0,001with error. 

We find the first and second derivatives of the given function: 

𝑓′(𝑥) = 3𝑥2 − 2𝑥   𝑓 ′′(𝑥) = 6𝑥 − 2 

According to the graph of the function, the local minimum lies between 0.5 and 1. 

(In fact, it is possible to quickly find the minimum of such a function analytically. It 

has a local minimum at exactly 2/3. to check.) We will complete the necessary 

calculations in the Excel program package and present the necessary information in 

the following table. 

The table will be written.\ 

 

In the 4th step of the iteration, we determine the minimum point  whose 

error is less than 0.00000021/ 

Disadvantages of Newton's method: 

1) The method requires a sufficiently good initial approximation. 

2) First and second order derivatives need to be given analytically. 

3) In Newton's method, there is no barrier that prevents the iterative method from 

drifting towards maximum or turning points. 

 

Let's say that the n-dimensional function f(x) =f(x1,x2,……….xn) is given in Rn 

space. Let the unconditional optimization problem be set: 

F(𝑥1,x2………….xn) -> min 

The necessary condition for the extremum for a multivariable function is as follows: 

{
  
 

  
 
𝜕𝑓(𝑥1𝑥1, 𝑥2… . . 𝑥𝑛)

𝜕𝑥1
= 0

𝜕𝑓(𝑥1𝑥1, 𝑥2… . . 𝑥𝑛)

𝜕2
= 0

𝜕𝑓(𝑥1𝑥1, 𝑥2… . . 𝑥𝑛)

𝜕𝑥3
= 0

 

Takes the form. We enter the following designations: 

𝛻𝑓(𝑥1𝑥1, 𝑥2… . . 𝑥𝑛)=𝑔𝑟𝑎𝑑 𝑓(𝑥) = ( 
𝜕𝑓(𝑥1𝑥1,𝑥2…..𝑥𝑛)

𝜕𝑥1
, …… . ,

𝜕𝑓(𝑥1𝑥1,𝑥2…..𝑥𝑛)

𝜕𝑥𝑛
 )𝑇  
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X=(𝑥1𝑥1, 𝑥2… . . 𝑥𝑛) ; xk =( x1
(k), x2

(k)………….xn
(k)); xT= (

𝑥1
𝑥2
……
𝑥𝑛

) -  x is the 

transpose of a vector. 

As the norm of any matrix A, one can take the largest of the modules of the 

eigenvalues. 

‖𝐴‖ = 𝑚𝑎𝑥
1≤𝑘≤𝑛

|𝜆𝑘|  

The eigenvalues of the matrix are the solutions of 𝑑𝑒𝑡(𝐴 − 𝜆𝐸) = 0 equations. 

There are several ways to choose the matrix norm.For example, it is possible to enter 

norm   ‖𝐴‖1=𝑚𝑎𝑥
1≤𝑖≤𝑚

 ∑ |𝑎𝑖𝑗|
𝑛

𝑗=1
  on rows or norm   ‖𝐴‖2=𝑚𝑎𝑥

1≤𝑖≤𝑚
 ∑ |𝑎𝑖𝑗|

𝑛

𝑗=1
  on 

columns and other norms. 

𝐻(𝑥𝑘) - the value of the Hessian matrix consisting of the second-order 

eigenderivatives of the given function at point  xk  

 

Hessian matrix for a 2-variable function:H(xk) =(
𝑓𝑥𝑥
′′ 𝑓𝑥𝑦

′′

𝑓𝑦𝑥
′′ 𝑓𝑦𝑦

′′ )   

 

Hessian matrix for a 3-variable function:H(xk) =(

𝑓𝑥𝑥
′′ 𝑓𝑥𝑦

′′ 𝑓𝑥𝑧
′′

𝑓𝑦𝑥
′′ 𝑓𝑦𝑦

′′ 𝑓𝑦𝑧
′′

𝑓𝑧𝑥
′′ 𝑓𝑧𝑦

′′ 𝑓𝑧𝑧
′′

) ; 

Etc. 

 

such as one-variable optimization problems 𝛻𝑓 = 0  we solve the equation 

numerically. We give the initial  xk approximation (we choose it as close to the 

solution as possible) and at this point we expand the function into a Taylor series. 

 

𝜑(𝑥) = 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)(𝑥 − 𝑥𝑘) +
1

2!
(𝑥 − 𝑥𝑘)

𝑇𝐻(𝑥𝑘)(𝑥 − 𝑥𝑘)  (**) 

 

If the function f(x) has a minimum, then the function reaches a minimum (**) at the 

point where the quadratic form reaches a minimum. 



 
 
Proceedings of International Conference on Scientific Research in Natural and Social Sciences 
Hosted online from Toronto, Canada. 
Date: 5th April, 2023 
ISSN: 2835-5326                                                                                Website: econferenceseries.com  

71 | P a g e  
 
 

If the objective function If the Hessian matrix 𝐻(𝑥𝑘) is positive defined from the 

point 𝑥𝑘  , then the 𝑥𝑘  point that reaches the minimum of the function 𝜑(𝑥) is the 

only one, and it is found from the condition that the gradient is equal to the vector 0 

𝛻𝜑 = 𝛻𝑓(𝑥𝑘)+𝐻(𝑥𝑘)(𝑥 − 𝑥𝑘)=0 

In this formula, we accept the solution found for x as the k+l-approach to the 

minimum of x, as a result, we get the following iterative formula: 

𝑥𝑘+1 = 𝑥𝑘 −𝐻
−1(𝑥𝑘)𝛻𝑓(𝑥𝑘) 

In this case, the 𝐻−1(𝑥𝑘)-matrix is the inverse matrix of the Hesse matrix. The 

search direction optimization algorithm determined from this relationship is called 

Newton's method.  The direction  

Pk =−𝐻−1(𝑥𝑘)𝛻𝑓(𝑥𝑘)   is called Newton's direction. This direction forms a non-

crossing angle with the gradient vector. In Newton's method, the minimum 

approximation to a point depends on the choice of initial approximation (point). If 

the objective function is strongly convex and𝑥̃ 𝜖𝐷𝑙(𝑓) is arbitrary, the Hessian 

matrix H(x) of the objective function for the points 

‖𝐻(𝑥) − 𝐻(𝑥̃)‖ ≤ 𝐿 ⋅ |𝑥 − 𝑥̃|  , 𝐿 > 0 

If the condition is fulfilled and the initial approximation is chosen close enough to 

the minimum point, then the algorithm of Newton's method will have a quadratic 

approximation speed, that is, the following estimate will be appropriate: 

|𝑥𝑘 − 𝑥
∗| < 𝐶|𝑥𝑘−1 − 𝑥

∗|2, 𝐶 > 0  

If the objective function is not strongly convex or the initial approximation is far 

from the sought point, Newton's method may deviate. 

 

In the problems of finding the minimum of arbitrary quadratic functions with a 

positive definite Hessian matrix, Newton's method gives a solution in one iteration, 

regardless of how the initial approximation point is chosen. 

The speed of quadratic approximation, as well as the ability to control the sufficient 

condition of reaching the minimum of the objective function using the Hessian 

matrix in each k-iteration, show that this algorithm has high efficiency. However, 

several problems arise in its practical application. 

1) In each k-iteration, the H(Xk) Hesse matrix should be kept positive definite, 

otherwise it is possible that the vector Pk will not be directed towards the minimum. 

2) H(Xk) - matrix is an eigenmatrix and its inverse matrix may not exist 
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3) One of the most important problems is to calculate the n x n matrix in each 

iteration and find its inverse, which requires a lot of calculations and time when the 

number of variables n is large. 

Therefore, there are various modifications of Newton's method to avoid or solve 

such problems. 

 

Let's look at the following examples: 

 

Example 1. 

𝑧 = 𝑥4 + 𝑦4 + 𝑥2 + 𝑦2 Let the two-variable function be given. 

 Using the graph of the function, we can choose the point   close to the 

minimum value. We use the above formulas in sequence. We find the first and 

second derivatives of the function with respect to x and y: 

 

{

𝜕𝑧

𝜕𝑥
= 4𝑥3 + 2𝑥

𝜕𝑧

𝜕𝑦
= 4𝑦3 + 2𝑦

=> 
𝜕2𝑧

𝜕𝑥2
= 12𝑥2 + 2  ,

𝜕2𝑧

𝜕𝑥𝜕𝑦
= 0 ,   

𝜕2𝑧

𝜕𝑦2
= 12𝑦2+2 

𝐻 = |
12𝑥2 + 2 0

0 12𝑦2 + 2
| 
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H(
−1

2
;
1

2
)=(

5 0
0 5

)=25>0  positive detected 

𝛥𝑓(𝑥, 𝑦) = (
𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
,
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
)

𝑇

= (
4𝑥3 + 2𝑥
4𝑦3 + 2𝑦

) = (
−
3

2
3

2

) 

𝑑𝑒𝑡𝐻−1 (
−1

2
;
1

2
) =

1

25
(
5 0
0 5

) = 

𝑥2 = (
−1

2
;
1

2
) −

1

25
(
5 0
0 5

)(
−
3

2
3

2

) = (
−1

2
;
1

2
) − (−

3

10
;
3

10
) = (−

1

5
;
1

5
) 

𝐻 (
3

2
; 2) = |

5 0
0 6

| 

We calculate the norm of the Hessian matrix and compare it with the given value of  

𝜀 = 0.1, if the norm of the matrix is greater than  𝜀 = 0.1, then we find  𝑥𝑘  . 

 

|𝐻 (
−1

2
;
1

2
) − 𝐻 (−

1

5
;
1

5
)|=|(

5 0
0 5

) − (

62

25
0

0
62

25

)|= |

63

25
0

0
63

25

| 

   

 2,52>0,1 

Using the above formulas again, we find the following point: 

𝐻 (
−1

5
;
1

5
)=|

62

25
0

0
62

25

|=
622

625
. 

𝛥𝑓 (−
1

5
;
1

5
) = (

𝜕𝑓(𝑥, 𝑦)

𝜕𝑥
,
𝜕𝑓(𝑥, 𝑦)

𝜕𝑦
)

𝑇

= (
4𝑥3 + 2𝑥
4𝑦3 + 2𝑦

) = (
−
54

125
54

125

) 

𝑑𝑒𝑡 (𝐻−1 (−
1

5
;
1

5
)) =

625

622
(

62

25
0

0
62

25

) 
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𝑥2 = (−
1

5
;
1

5
) −

625

622
(

62

25
0

0
62

25

)(
−
54

125
54

125

) = (−
1

5
;
1

5
) − (−

27

155
;
27

155
)

= (−
4

155
;
4

155
) 

 

We calculate the norm of the Hessian matrix and compare it with the given value  

𝜀=0.1 , if the norm of the matrix is greater than  𝜀=0.1 , then we find 𝑥𝑘 . We 

continue this process until𝜀=0.1 is less than the norm of the matrix, and we take the 

last 𝑥𝑘  as the optimal point. 

|𝐻 (−
1

5
;
1

5
) − 𝐻 (−

4

155
;
4

155
)|=|(

2,48 0
0 2,48

) −

(
2,008 0
0 2,008

)|=|(
0,472 0
0 0,472

)                0,472>0,1 

 

𝐻 (−
4

155
;
4

155
)=(
2,008 0
0 2,008

)=4,03      𝛥𝑓 (−
4

155
;
4

155
)=(

−0,051
0,051

)               

 

   𝑑𝑒𝑡 (𝐻−1 (−
4

155
;
4

155
)) =

1

4,03
(
2,008 0
0 2,008

) 

𝑥2 = (−0,026; 0,026) −
1

4,03
(
2,008 0
0 2,008

) (
−0,051
0,051

)

= (−0,026; 0,026) − (−0,025; 0,025) = (−0,001; 0,001) 

 

|𝐻(−0,026; 0,026) − 𝐻(−0,001; 0,001)|=|(
2,008 0
0 2,008

) −

(
2,000012 0

0 2,000012
)|=|(

0,007988 0
0 0,007988

) 

 

0,007988<0,1 

Example 2: 

Let    Z=𝑥4 + 2𝑥3𝑦2 + 𝑦2    be a two-variable function. Using the graph of the 

function, we can choose the point M(
1

2
;0) that is close to the minimum value. We use 
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the above formulas in sequence. We find the first and second derivatives of the 

function with respect to x and y: 

 

{

𝜕𝑧

𝜕𝑥
= 4𝑥3 + 3𝑥2𝑦2

𝜕𝑧

𝜕𝑦
= 2𝑥3𝑦 + 2𝑦

⇒
𝜕2𝑧

𝜕𝑥2
= 12𝑥2 + 6𝑥𝑦2, 

𝜕2𝑧

𝜕𝑥𝜕𝑦
= 6𝑥2𝑦,   

𝜕2𝑧

𝜕𝑦2
= 2𝑥3 + 2 

 𝑑𝑒𝑡(𝐻) = (
12𝑥2 + 6𝑥𝑦2 6𝑥2𝑦

6𝑥2𝑦 2𝑥3 + 2
) 

H(
1

2
; 0) =(

3 0

0
9

4

)=
27

4
 

det𝐻−1 (
1

2
; 0) =

4

27
(
9

4
0

0 3

) 

𝛥𝑓(𝑥; 𝑦) = ( 2𝑥3𝑦
4𝑥3  +2𝑦

+ 3𝑥 
2𝑦2
)
𝑇

 

𝛥𝑓 (
1

2
; 0)=(

1

2

0
)  

                                                                             𝑥2 = (
1

2
; 0) −

4

27
(
9

4
0

0 3
)(

1

2

0
)=(

1

2
; 0)-

4

27
(
9

8
; 0)=(

1

2
; 0)-(

1

6
; 0)=(

1

3
; 0) 
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|𝐻 (
1

2
; 0) − 𝐻 (

1

3
; 0)| = |(

3 0

0
9

4

) − (

4

3
0

0
91

27

)| = |(

5

3
0

0
38

27

) |       
5

3
>0,1 

 

 

 

H(
1

3
; 0) =(

4

3
0

0
91

27

)=
364

81
 

𝛥𝑓 (
1

3
; 0)=(

4

27

0
) 

𝑑𝑒𝑡 𝐻−1 (
1

3
; 0) =

81

364
(

91

27
0

0
4

3

)  

𝑥2 = (
1

3
; 0) −

81

364
(

91

27
0

0
4

3

)(
4

27

0
)=(

1

3
; 0) − 

81

364
(
91∗4

27∗27
; 0) (

4

27

0
)= 

=(
1

3
; 0) − (

1

9
; 0)=(

2

9
; 0) 

 

|𝐻 (
1

3
; 0) − 𝐻 (

2

9
; 0)| = |(

4

3
0

0
91

27

) − (

84

81
0

0 2
16

729

)|=|(

24

81
0

0
983

729

)| 
983

729
>0.1 

H(
2

9
; 0) =(

84

81
0

0
1474

729

)=2,097 

𝛥𝑓 (
2

9
; 0)=(

0,043
0

) 

det𝐻−1 (
2

9
; 0) −

1

2,097
(
2,022 0
0 1,037

) 

 

𝑥2 = (0,222; 0) −
1

2,097
(
2,022 0
0 1,037

) (
0,043
0

)= 

= (0,222; 0) − (0,041; 0)=(0,181; 0) 
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|𝐻(0,222; 0) − 𝐻(0,181; 0)| = |(
1,037 0
0 2,022

) −

(
0,393 0
0 2,013

)|=|(
0,643 0
0 0,009

)|           0,643>0,1 

H(0,181; 0) =(
0,393 0
0 2,013

)=0,791 

𝛥𝑓(0,181; 0)=(
0,024
0

)  

det𝐻−1 (0,181; 0) −
1

0,791
(
2,013 0
0 0,393

) 

 

 

𝑥2 = (0,181; 0) −
1

0,791
(
2,013 0
0 0,393

) (
0,024
0

)=    

= (0,181; 0) − (0,061; 0)=(0,12; 0) 

 

|𝐻(0,181; 0) − 𝐻(0,061; 0)| = |(
0,393 0
0 2,013

) −

(
0,303 0
0 2,00045

)|=|(
0,09 0
0 0,0145

)|          0,09<0,1. 

#file Launch.py 

from Library3 import newton_method 

from Library1 import objective,Gamma,x,y; 

import sympy as sm 

import numpy as np 

newton_method(objective,Gamma,{x:0.5,y:0}) 

The main file is located in the Launch.py program, this program is compiled based 

on 3 libraries. 

import sympy as sm 

import numpy as np 

# Define symbols & objective function 

x, y = sm.symbols('x y') 

Gamma = [x,y] 

objective = x**4+2*x**3+y**2 
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def get_gradient(function, symbols): 

    ''' 

    Helper function to solve for Gradient of SymPy function. 

    ''' 

    d1 = {} 

    gradient = np.array([]) 

    for s in symbols: 

        d1[s]= sm.diff(function,s) # Take first derivative w/ respect to each symbol 

        gradient = np.append(gradient, d1[s]) 

    return gradient 

# Function to return the Hessian  

def get_hessian(function, symbols): 

    ''' 

    Helper function to solve for Hessian of SymPy function. 

    ''' 

    d2 = {} 

    hessian = np.array([]) 

    for s1 in symbols: 

        for s2 in symbols: 

            d2[f"{s1}{s2}"] = sm.diff(function,s1,s2) # Take second derivative w/ 

respect to each combination of symbols 

            hessian = np.append(hessian, d2[f"{s1}{s2}"]) 

    hessian = np.array(np.array_split(hessian,len(symbols))) 

    return hessian 

This Library1.py file is the first generated library that basically runs on 2 functions 

and returns a result 

functions get_gradient() and get_hessian() have been created. 

#this file is Library3.py 

import sympy as sm 

import numpy as np 

from Library2 import get_gradient,get_hessian 

def newton_method(function,symbols,x0,iterations=100,mute=False): 

    ''' 
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    Function to run Newton's method to optimize SymPy function. 

    ''' 

    # Dictionary of values to record each iteration 

    x_star = {} 

    x_star[0] = np.array(list(x0.values())) 

 

    if not mute: 

        print(f"Starting Values: {x_star[0]}") 

    i=0 

    while i < iterations: 

         

        # Get gradient and hessian 

        gradient = get_gradient(function, symbols, dict(zip(x0.keys(),x_star[i]))) 

        hessian = get_hessian(function, symbols, dict(zip(x0.keys(),x_star[i]))) 

         

        # Newton method iteration scheme 

        x_star[i+1] = x_star[i].T - np.linalg.inv(hessian) @ gradient.T 

         

        # Check convergence criteria 

        if np.linalg.norm(x_star[i+1] - x_star[i]) < 10e-5: 

            solution = dict(zip(x0.keys(),x_star[i+1])) 

            print(f"\nConvergence Achieved ({i+1} iterations): Solution = {solution}") 

            break  

        else:  

            solution = None 

         

        if not mute: 

            print(f"Step {i+1}: {x_star[i+1]}") 

         

        i += 1 

    

    return solution 
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The Result: 

 
This is Library3.py file, the main result is sent in this library. This is 

newton_method(args,args,args..) 

function returns the result. 

Several problems arise in the application of Newton's method of solving 

optimization problems. 

1) It is necessary to fulfill the condition that the H(xk) Hesse matrix is positive 

definite in each k-iteration, otherwise it may not be directed towards the minimum. 

2) H(xk) - the matrix is an eigenmatrix and its inverse matrix may not exist. 

3) One of the most important problems is to calculate the n x n matrix in each 

iteration and find its inverse, which requires a lot of calculations and time when the 

number of variables n is large. 

4) Depending on the selection of the starting xk point, it may be necessary to perform 

multi-step calculations until the norm of the matrix is less than the given pression 𝜀. 

       Therefore, there are various modifications of Newton's method to avoid or solve 

such problems. 

 

Books: 

1. Lisa, D.,  Nicholas, M., An Introduction to Statistics and Data Analysis Using 

Stata  SAGE 2019 

2. Maurits, K ., Edwin ,H., Statistics for Data Scientists: An Introduction to 

Probability, Statistics, and Data Analysis Springer 2022. 

3. FeruzaSaidovnaRakhimova in recognition of the paper publication of the research 

paper on Central Asian Journal of Mathematical Theory and Computer 

Science(CAJMTCS) with the title:ONTEACHINGSTUDENTSNEWTON'S 



 
 
Proceedings of International Conference on Scientific Research in Natural and Social Sciences 
Hosted online from Toronto, Canada. 
Date: 5th April, 2023 
ISSN: 2835-5326                                                                                Website: econferenceseries.com  

81 | P a g e  
 
 

METHODOFSOLVING ONE-DIMENSIONAL OPTIMIZATION PROBLEMS 

Vol 4 No 1(2023):CAJMTCS 

4. Ronald, L.,  Jonathan R., Multivariable Calculus with MATLAB : With 

Applications to Geometry and Physics Springer 2017 Ron, L.,  Bruce, E.,: (2005) 

Brief Calculus : An Applied Approach 7th edition, Cengage Learning  

5. Rakhimov, Bakhtiyar; Rakhimova, Feroza; Sobirova, Sabokhat;  Allaberganov, 

Odilbek; ,Mathematical Bases Of Parallel Algorithms For The Creation  Of 

Medical Databases,InterConf, 2021. 

 

 

 

 


