IKKI KOMPONENTLI MUHITLARDA NOCHIZIQLI FILTRATSIYA JARAYONLARINI MATEMATIK MODELLASHTIRISH

Main Article Content

Shavkatova Go'zal Shavkatovna

Abstract

Hozirgi kunda nochiziqli jarayonlarni sonli modellashtirish, shu jumladan, global yechimlarning mavjud bo‘lish shartlarini topish, chekli tezlikda tarqalishini aniqlash, effektiv sonli sxemalarni taklif qilish va asoslash, chiziqsiz jarayonlarni sonli o‘rganish muhim masalalar hisoblanadi. Jahon miqyosida, jumladan Italiya, Germaniya, Ispaniya, Xitoy, AQSH, Buyuk Britaniya, Fransiya, Avstriya va boshqa mamlakatlarda fanning mexanika, fizika, texnologiya, biofizika, biologiya, ekologiya, tibbiyot va boshqa turli sohalarida uchraydigan, nochiziqli differensial tenglamalar orqali ifodalanuvchi hodisa va jarayonlarning matematik modellarini o‘rganishga katta qiziqish borligi kuzatilmoqda. O‘zbekiston Respublikasi Prezidentining 2017-yil 7-fevraldagi PF-4947-son «O‘zbekiston Respublikasini yanada rivojlantirish bo‘yicha Harakatlar strategiyasi to‘g‘risida»gi, 2018-yil 19-fevraldagi PF-5349-son «Axborot texnologiyalari va kommunikatsiyalar sohasini yanada takomillashtirish chora-tadbirlari to‘g‘risida»gi Farmonlari, 2018-yil 27-apreldagi PQ-3682-son «Innovatsion g‘oyalar, texnologiyalar va loyihalarni amaliy joriy qilish tizimini yanada takomillashtirish chora-tadbirlari» hamda ushbu sohada qabul qilingan me’yoriy-huquqiy hujjatlarda 6 nazarda tutilgan maqsad va vazifalarni amalga oshirishga muayyan darajada xizmat qiladi. Tadqiqotning respublika fan va texnologiyalari rivojlanishi-ning ustuvor yo‘nalishlariga bog‘liqligi. Mazkur tadqiqot respublika fan va texnologiyalar rivojlanishining IV. «Axborotlashtirish va axborot-kommunikatsiya texnologiyalarini rivojlantirish» ustuvor yo‘nalishi doirasida bajarilgan.

Article Details

How to Cite
Shavkatova Go’zal Shavkatovna. (2024). IKKI KOMPONENTLI MUHITLARDA NOCHIZIQLI FILTRATSIYA JARAYONLARINI MATEMATIK MODELLASHTIRISH. Proceedings of International Conference on Modern Science and Scientific Studies, 3(1), 242–244. Retrieved from https://econferenceseries.com/index.php/icmsss/article/view/3660
Section
Articles

References

Aripov M.M., Mukimov A.SH., Djabbarov O. On the properties of a radially symmetric self-similar solution of a nonlinear heat conduction equation with a source // Journal of Physics: Conference Series, 2021. Vol. 1789. – P. 012010 (№ 3; Scopus; IF=0,7).

Aripov M., Mukimov A., Mirzayev B. To Asymptotic of the Solution of the Heat Conduction Problem with Double Nonlinearity with Absorption at a Critical Parameter // Mathematics and statistics, 2019. Vol. 7. Issue 5. – P. 205-217 (№ 3; Scopus; IF=1).

Aripov M., Mukimov A., Sayfullayeva. To Asymptotic of the Solution of the Heat Conduction Problem with Double Nonlinearity, Variable Density, Absorption at a Critical Parameter // International Journal of Innovative Technology and Exploring Engineering, 2019. Vol. 9. Issue 1. – P. 2278-3075 (№ 3; Scopus; IF=0,6).

Aripov М.М., Mukimov A. Asymptotics of solutions and numerical simulation of the nonlinear heat conductivity problem with absorption and variable density // Bulletin of Nuuz: Mathematics and Natural Sciences, 2019. Vol. 2. Issue 3. – P. 152-164 (Oliy attestatsiya rayosatining 2020-yil 30-iyuldagi 283/7.1-son qarori).

Aripov М.М., Mukimov A. Asymptotic behavior of solutions of semilinear parabolic systems at the critical parameter // Bulletin of the Institute of Mathematics, 2021. Vol. 4. Issue 3. – P. 1-11 (01.00.00. № 6). 43

Aripov М.М., Mukimov A. An asymptotic solution radially symmetric selfsimilar solution of nonlinear parabolic equation with source in the second critical exponent case // Acta Nuuz, 2017. Vol. 2. Issue 2. – P. 21-30 (01.00.00. № 8).

Арипов М.М., Мукимов А.Ш. Aсимптотика решения задачи теплопроводности с нелинейностью и переменной плотностью при критической экспоненте // Доклады академии наук, 2019. – № 6. – С. 3-6 (05.00.00. № 7).