CLASSIC CONDENSER CAPACITY AND A NEW CAPACITY IN THE CLASS OF m − sh
Main Article Content
Abstract
In this work we will construct connection between classic condenser capacity and a new capacity in the class of m − sh functions.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Abdullaev B.I.” Potential theory on m-subharmonic functions.” DSc diss., Urgench State University, 2016 (in Russian).
Sadullaev A.” Pluripotential theory. Applications.”// Palmarium Academic Publishing, 2012(in Russian).
Sadullaev A., Operator (ddcu)n and conductor capacities // DAN USSR, T.251:1, 1980, p. 44-57(in Russian).
Rakhimov K., Cn-capacity, defined by Laplacian // Uzbek Mathematical Journal, 2012, No2, pp. 99-105 (in Russian).
Bedford E. and Taylor B.A. A new capacity for plurisubharmonic functions// Acta Math. 1982.V. 149. P. 1- 40.
Beckenbach E., Bellman R. Inequalities. M.: Mir, 1961. pp. 65-68 (in Russian).
Brelo M. Fundamentals of classical potential theory. M.: Mir, 1964. p. 41-74 (in Russian).
Landkof N. S. Fundamentals of modern potential theory. M.: Nauka, 1966. p. 167-244 (in Russian).
Sadullaev A., Rakhimov K. Capacity Dimension of the Brjuno Set, Indiana University Mathematics Journal Vol. 64, No. 6 (2015), pp. 1829-1834.
Aupetit B., Wermer J., Capacity and uniform algebras. J. Functional Analysis, V.28, (1978), 386-400.
Levenberg N., Taylor B.A., Comparison of capacities in Cn. Lecture Notes in Mathem., V.1094, (1984), 162-172.
Alexander H., Taylor B.A., Comparison of two capacities in Cn . Math. Z., V.186, (1984), 407-417.
Alexander H., Projective capacity. Ann.of Math.Studies, No100, (1981), 1-27.
Sadullaev A., Plurisubharmonic measures and capacities on complex manifolds. Uspekhi mat. nauk, T.36: 4, (1981), 53-105.