REVIEW OF EDGE DETECTION METHODS IN IMAGES: BENEFITS, LIMITATIONS AND DEVELOPMENT PROSPECTS
Main Article Content
Abstract
This article outlines the procedures involved in an edge detection system in particular. The review details the fundamental concepts of edge detection, from the choice of the detection method to the differentiation and to the reason why a particular derivative is used. In edge detection many researchers hold on scientific work to enhance clearness and accurateness in order to be efficient foundation in face recognition, license plate detection and others. There are many existing edge detection methods like Canny, Sobel, Arbelaz and others are considered.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Кэнни, J. (1986). A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), 679-698.
Собель, I., & Feldman, G. (1968). A 3x3 isotropic gradient operator for image processing. Stanford Artificial Intelligence Project, Vision Laboratory.
Арбелаз, P., Maire, M., Fowlkes, C., & Малик, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898-916.
Перона, P., & Малик, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629-639.
Dollár, P., & Зитник, C. L. (2013). Structured forests for fast edge detection. In Proceedings of the IEEE International ConfeРенce on Computer Vision (pp. 1841-1848).
Martin, D., Fowlkes, C., Tal, D., & Малик, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings of the IEEE International ConfeРенce on Computer Vision (Vol. 2, pp. 416-423).
Хю, L., Lu, C., Хю, Y., & Jia, J. (2012). Image smoothing via L0 gradient minimization. ACM Transactions on Graphics, 30(6), 174.
Джейн, A. K. (1989). Fundamentals of digital image processing. PРенtice-Hall.
Шен, C., Liu, L., & Hengel, A. V. D. (2013). Detecting and aligning objects via boundary structure repetition. In Proceedings of the IEEE ConfeРенce on Computer Vision and Pattern Recognition (pp. 971-978).
Рен, X., & Малик, J. (2003). Learning a classification model for segmentation. In Proceedings of the IEEE International ConfeРенce on Computer Vision (Vol. 2, pp. 10-17).
Доллар, P., Appel, R., Belongie, S., & Перона, P. (2006). Fast feature pyramids for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1188-1198.
Арбелаз, P., Pont-Tuset, J., Barron, J. T., Marques, F., & Малик, J. (2014). Multiscale combinatorial grouping. In Proceedings of the IEEE ConfeРенce on Computer Vision and Pattern Recognition (pp. 328-335).
Bai, X., Wang, J., Shi, B., & Latecki, L. J. (2010). Robust skeleton extraction from noisy binary images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(12), 2256-2271.
Zhang, K., Zhang, L., Mou, X., & Zhang, D. (2014). FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8), 2378-2386.
He, K., Sun, J., & Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(6), 1397-1409.
Shi, J., & Tomasi, C. (1994). Good features to track. In Proceedings of the IEEE ConfeРенce on Computer Vision and Pattern Recognition (pp. 593-600).
Xie, S., & Tu, Z. (2015). Holistically-nested edge detection. In Proceedings of the IEEE International ConfeРенce on Computer Vision (pp. 1395-1403).
Доллар, P., Wojek, C., Schiele, B., & Перона, P. (2009). Pedestrian detection: A benchmark. In Proceedings of the IEEE ConfeРенce on Computer Vision and Pattern Recognition (pp. 304-311).
Арбелаз, P., Hariharan, B., Gu, C., Gupta, S., & Малик, J. (2014). Semantic segmentation using regions and parts. In Proceedings of the IEEE ConfeРенce on Computer Vision and Pattern Recognition (pp. 716-723).
Зитник, C. L., & Dollár, P. (2014). Edge boxes: Locating object proposals from edges. In Proceedings of the European ConfeРенce on Computer Vision (pp. 391-405).