Date: 19 " June - 2024

ISSN: 2835-3730 **Website:** econferenceseries.com

GEOCHEMICAL FEATURES OF EARTH MINERALIZATION IN BLACK SHALES OF NORTHERN NUROTA RIDGE (ON THE EXAMPLE OF THE USTUK ORE OCCURRENCE)

Z. Y. Ergashov¹,

E. H. Kutliev²,

N. Z. Gafforova³,

National University of Uzbekistan named after Mirzo Ulugbek¹ National University of Uzbekistan named after Mirzo Ulugbek² Tashkent State Technical University named after Islam Karimov³

Abstract

With the development of science and technology and the increasing demand for high-tech materials, the need for new raw materials such as rare earth elements (REEs) is rising. To create and enrich the base of REEs, the Ministry of Geology and Mining Industry of the Republic of Uzbekistan is encouraging the search for industrial mineralization of these raw materials in several promising areas. In the black shales of the Central Kyzylkum, particularly in the Northern Nurota ridge, numerous associations of uranium, molybdenum, and vanadium have been studied. Recent exploration and scientific research by several scientists, such as A.A. Khalilov and I.B. Turamuratov, have identified and are studying the relationship between uranium-vanadium-molybdenum mineralization and REE mineralization. This article presents the results of studies of the geochemical properties of these critical metals at the Ustuk ore occurrence.

Key words: Northern Nurota ridge, black shale, uranium, molybdenum, vanadium, rare earth elements (REEs), Proterozoic eon, geochemical features.

The Proterozoic eon, spanning from 2.5 billion to 541 million years ago, was a significant period in Earth's history marked by crucial geological, atmospheric, and biological changes. Among the notable geological formations from this eon are the black shales, sedimentary rocks rich in organic material. These black shales are particularly noteworthy for their high concentrations of uranium, molybdenum, vanadium, and rare earth elements (REEs). Understanding the reasons behind this enrichment involves delving into the geochemical, biological, and depositional processes that occurred during the Proterozoic.

Hosted online from Paris, France.

Date: 19th June - 2024

ISSN: 2835-3730 Website: econferenceseries.com

The increasing demand for important raw materials such as uranium and rare earth elements makes the study of these black shales urgent. This paper aims to understand the geological, geochemical, and environmental factors contributing to the enrichment of these elements in Proterozoic black shales and to develop criteria for finding large deposits. In preparing this article, the results of previous geological exploration work in the territory and the results of work performed during my activity were used. ICP-MS results (61 elements) from more than 7,000 samples taken from lithogeochemical surveys, various mine workings (trenches, drill holes, and underground mine workings) were analyzed.

The practical significance of the work lies in the study of the statistical features of the mineralization of uranium and rare earth elements, the connection with satellite elements, the determination of the main associations of mineralization through geostatistical analysis of geochemical data, and the conclusion about their location in space and, ultimately, the development of geochemical search criteria.

Black shales are fine-grained sedimentary rocks characterized by high organic carbon content. They typically form in anoxic (oxygen-poor) environments such as deep marine basins or restricted sea areas. The lack of oxygen in these settings allows for the preservation of the concentration of metals and organic matter, which contributes to the dark color of the shales. Organic matter can bind with metals like uranium, molybdenum, and vanadium, facilitating their accumulation. The decomposition of organic matter also releases hydrogen sulfide (H₂S), which can react with metal ions to form insoluble metal sulfides, further concentrating these elements in the shale.

The Ustuk ore occurrence is located in the central part of the Northern Nurota ridge, stretching for more than 100 km in the northwest direction, 7-40 km wide, and administratively belongs to the Koshrabotsky district of the Samarkand region. The central and eastern parts of the area differ from the rest in relative height exceeding 300 m and absolute height reaching 2136 m (Kharchigoy peak). The slopes and western part of the ridge are dry hills with a small number of outcrops of Paleozoic rocks.

The Ustuk ore occurrence is located in the Zarafshano-Turkestan structural-formational zone, on the territory of the Ustuk-Fozilmansky (95 km²) uranium ore field, within the Uchmolo-Ustuk uranium-bearing structural unit, on a watershed with an absolute height of 1600-2114 m (**figure 1**).

ISSN: 2835-3730 **Website:** econferenceseries.com

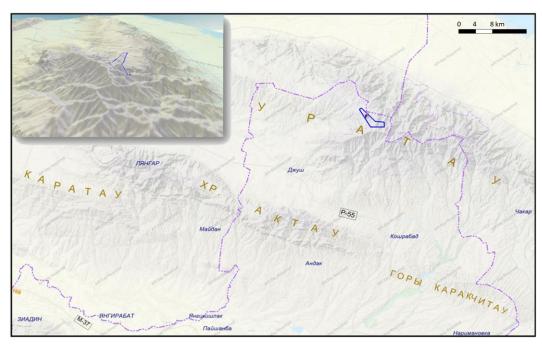


Figure 1. Location map of the Ustuk ore occurrence

The northern slope of the Northern Nurota ridge is quite narrow and steep, and its foothills adjoin the Central Kyzylkum Plain. The southern slope is low and wide, forming a steppe zone. The topography of the upper part of the slopes adjacent to the reservoir is very uneven and rocky, with exposures of Paleozoic rocks. Alluvial and colluvial rocks are rare, and Quaternary sediments are scarce. On the southern slope of the central part of the Northern Nurota ridge, waterways such as Nakurtsoy, Ukursaroy, Gudzhumsoy, Navkatsoy, and Pangatsoy flow towards the Zerafshan Valley.

The central and western parts of the Northern Nurota mountain range are composed of Precambrian, Paleozoic, and Cenozoic sediments. The studied field is represented mainly by Precambrian (Uchmola formation - PR1? uc, Suvliksoy formation - R2 sv), Paleozoic (Konsoy formation - O1-2 kn), and eluvial-deluvial Quaternary sediments (**figure 2**).

Date: 19th June - 2024

ISSN: 2835-3730 **Website:** econferenceseries.com

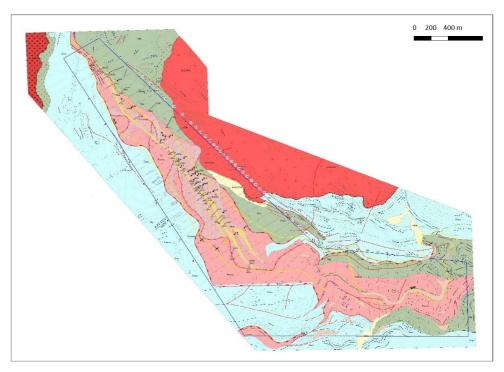


Figure 2. Geological map of the Ustuk ore occurrence

Initially, the Ustuk area database was prepared in MS Excel for processing in computer programs. Statistica 10 was used for statistical analysis, QGIS and Surfer 18 were used for geospatial analysis and geochemical mapping.

At the next stage, the samples were divided into **7 groups** based on the definition of rocks in the database, as well as the amount of rock-forming chemical elements:

Table 1. Number of samples used in the study by group

Name of rocks	Code	Number of samples
Quartz-sericite shales (phyllites)	1	1 909
Carbonaceous-siliceous shales, microquartzites and	2	3 146
quartzites		
Granitoids	3	22
Lamprophyre dikes	4	34
Quartz veins	5	164
Limestones and dolomites	6	157
Metasomatites and skarns	7	1 824
Total:		7 256

Descriptive statistical tables for each group (number of samples, arithmetic mean of metals, median, mode, mode frequency, minimum and maximum counts, upper and

Open Access | Peer Reviewed | Conf

Hosted online from Paris, France.

Date: 19th June - 2024

ISSN: 2835-3730 **Website:** econferenceseries.com

lower quartile and percentile counts, variance, standard deviation), local background, minimum anomaly magnitude and Clarke number, based on the highest percentile was calculated based on these parameters.

To draw a preliminary conclusion about the distribution of chemical elements in rocks, the calculated Clark concentrations as a result of descriptive statistical analysis for each rock group were arranged in descending order. To do this, Clark concentrations were calculated by dividing the maximum values of each chemical element by the local background amount.

As a result, it was established that the mineralization of uranium-rare earth elements occurred in the quartz-sericite and carbon-siliceous shales of the suvliksoy formation, as well as in metasomatites and skarnization zones developed between them.

At the next stage, by studying the statistical features of the mineralization of uranium-rare earth elements in the quartz-sericite and carbon-siliceous shales, metasomatites and skarnization zones to identify the main geochemical associations of their mineralization and related associations, the following was carried out:

CONCLUSION

The black shales of the Northern Nurota ridge, particularly at the Ustuk ore occurrence, demonstrate significant enrichment in uranium, molybdenum, vanadium, and rare earth elements. These enrichments are primarily due to the unique geological and geochemical conditions during the Proterozoic, including high organic content, reducing conditions, and hydrothermal fluid activity. Understanding these factors provides valuable insights for exploring and developing new mineral resources in similar geological settings.

REEs, although typically present in low concentrations, can become enriched in black shales through similar processes of organic binding and hydrothermal input. The specific geochemical behavior of REEs, coupled with the depositional environment of black shales, facilitates their accumulation.

Hydrothermal-metasomatic transformations are important in places where magmatic melts may pass through the boundaries of granitoid massifs and in places where earth faults intersect in different directions. In the Ustuk study area, regional potassium-spar-greisen metasomatism of Upper Carboniferous age is developed, associated with the Ustuk and Sentob granite massifs (Mikhailov V.A.). This factor can be understood as mineralization is predominantly confined to developed

Hosted online from Paris, France.

Date: 19th June - 2024

ISSN: 2835-3730 Website: econferenceseries.com

metasomatization in carbonaceous-siliceous shales, quartz-sericite (breccia) zones, and in rare cases, skarnization.

Based on the results of a geostatistical study, it has been established that uranium mineralization occurs together with rare earth elements. The fact that geochemical maps of rare earth elements almost (\$\approx 70\%) correspond to uranium halos also confirms their close relationship with each other in mineralization.

Tuyamunite and uraninite occupy the main place among uranium minerals. Sometimes they turn into coffinite and brannerite. Uranium and rare earth elements are rich mainly in iron hydroxides and primary ores - the minerals pyrite, pyrrhotite, molybdenite, and sphene. Rare earth elements are predominantly micro-nanomineral in size (up to 50-100 microns); they are found mainly in hydroxides and oxides of iron and manganese. The cesium content in them is 7.40-27.12% (Kaneev R.I.).

References

- 1. Belov N.S., Nedoshivin I.A., Shvey I.V. "Otsenka pyerspektiv uranonosnosti nijnepaleozoyskoy uglyerodisto-kremnistoy formatsii Kizilkumov i Nuratinskix gor" VIMS. M., 1965.
- 2. Golubev B.B. «Otsenka pyerspektiv viyavleniya promishlennix mestorojdeniy urana v paleozovskov uglyerodisto-kremnistov formatsii Sredney Azii. VSEGEI. L., 1969.
- 3. Golubev B.B. «Videlenie ploshhadey pod glubinnie poiski mestorojdeniy urana v Paleozovskov uglyerodisto-kremnistov formatsii Kizilkumov» VSEGEI. L., 1972.
- 4. Lukoshhenko A.P «Otsenka pyerspektiv uranonosnosti uglyerodisto-kremnistoy formatsii Auminzatau-Tamditau i Nuratau-Malguzarskix gor s sostavleniem prognoznov karti m-ba 1:50000» Tashkent, 1977.
- 5. Lukoshhenko A.P. "Provedenie opyerejayushhix spetsializirovannix poiskovix rabot v masshtabe 1:50000 i 1:25000, s selyu viyavleniya uranovix mestorojdeniy kontrastnih rud v drevnih metamorficheskix slantsax Sentralnix Kizilkumov", GGP «Kiziltepageologiya». Tashkent, 2000.
- 6. Lukoshhenko A.P. Sravnitelnaya xaraktyeristika paleozoyskogo fundamenta uranovorudnix rayonov Sentralnix Kizilkumov po ix uranonosnosti, opoiskovannosti i tekniko-ekonomicheskim osobennostyam s ranjirovkoy rudoproyavleniy na pyerspektivyu poiskovo-razvedochnix rabot. GP NPC «Urangeologiya». Tashkent, 2007.

Hosted online from Paris, France.

Date: 19th June - 2024

ISSN: 2835-3730 **Website:** econferenceseries.com

7. Rustamov A. I., Ergashov Z. Y. «Opyerejayushie spetsializirovannie poiskovie raboti na viyavlenie promishlennogo uranovogo orudeneniya skarnovogo tipa v predelax Ustuk-Fazilmanskoy pyerspektivnoy ploshadi v gorax Sevyerniy Nuratau». Tashkent, 2016.

8. Turamuratov I.B., Khalilov A.A., Ishboboev T., Ergashov Z.Y., A.A. Kushiev, Three-dimensional geostatistic modeling of hidden uranium-rare-metal-rare-earth mineralization (black shale formations of Western Uzbekistan on the basis of analysis of the spatial distribution of rare rare-earth ore minerals), PJAEE, 17 (6) (2020).

