
Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

215 | P a g e

SOFTWARE IMPLEMENTATION OF SM4 BLOCK ENCRYPTION

ALGORITHM IN PYTHON PROGRAMMING LANGUAGE

Liu Lingyun

Ph.D. student of the National University of Uzbekistan, Jining Normal University,

Shenyu International Community, Jining District, Ulanqab, Inner Mongolia, China

Abstract

In this work, the methods of implementation of the SM4 encryption algorithm

transformations in the Python programming language were studied. It was found that

the implementation of S-box in the form of a 1-dimensional table allows to achieve

efficiency in terms of time. An efficient method has also been found for the cyclic

left shift operation. The results obtained for the code written in the Python

programming language for the encryption algorithm were compared with other

implementation options in terms of the time spent on encryption and decryption, and

it was found that this implementation method allows to achieve higher efficiency in

terms of time.

Keywords. SM4,SM4_Mix, symmetric-key cryptographic algorithm, round

function, mixed substitution, nonlinear transformation, linear transformation, key

generation, reference function

Introduction

The SM4 block cipher, a symmetric-key cryptographic algorithm, was introduced

by the Office of State Commercial Cryptography Administration (OSCCA) in China

and was officially recognized as the national standard for the cryptographic industry

in March 2012 [1, 2]. In June 2021, it became part of the ISO/IEC 18033-3

international standard [3]. SM4 operates as a block cipher, featuring a block size of

128 bits and a key size of 128 bits, and it involves a total of 32 rounds. In each round,

all four state words and one subkey word serve as inputs, replacing a single state

word. The length of both state and subkey words is 32 bits.

SM4, the sole symmetric encryption algorithm authorized by OSCCA for Chinese

use, has found extensive applications across various industries. Its main functions

encompass bolstering network security by encrypting data packets and safeguarding

communication protocols. Additionally, SM4 plays a pivotal role in electronic

payment systems, guaranteeing the security and confidentiality of financial

transactions. In the domain of image processing, SM4 ensures the privacy of visual

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

216 | P a g e

data through encryption, digital watermarking, and secure image sharing.

Furthermore, the integration of SM4 into 5G communication systems enhances

security in data transmission, network function virtualization (NFV), and edge

computing.

The proper execution of cryptographic algorithms is a critical requirement. This

paper is dedicated to the exploration of efficient implementations of SM4 on high-

end platforms. The most obvious approach is to leverage instruction set extensions.

An illustrative example is the incorporation of advanced encryption standard new

instructions (AES-NI) [4] into numerous processors, leading to substantial

enhancements in the speed and security of applications utilizing AES. However,

there are limited processors that offer specialized instructions tailored for SM4,

which significantly hinders the performance of applications that rely on it. Building

on our prior findings in the paper authored by Miao et al. [5], we naturally propose

further optimizations to accelerate the SM4 block cipher.

Main part

SM4 operations are defined with respect to 8-bit, 32-bit, or 128-bit quantities,

allowing us to refer to 8-bit values as "bytes," 32-bit values as "words," and 128-bit

values as "blocks." The symbol ⨁ signifies the bitwise exclusive-OR operation,

while "<<<" denotes a left circular rotation by a certain number of bits in a 32-bit

word vector. Block cipher encryption with the key k is represented as Enck. When

it comes to the multiplication of two elements X, Y ∈ GF(2128), we use the notation

X ∙ Y, and the details of the field multiplication operation. The expression {0,1}m

signifies a bit string of length m, and 0128 represents a string consisting of 128 zero

bits. The concatenation of two bit strings, A and B, is denoted as A||B. Several

researches have been conducted on the implementation of the SM4 encryption

algorithm [6-14].

SM4 is a block cipher algorithm with a 128-bit block size and a 128-bit key length.

It employs an unbalanced Feistel structure and undergoes 32 rounds of the

encryption process, with Xi ∈ Z2
32, i = 0,1, … ,35 representing bit strings of 32-bit

length, respectively. Subsequently, SM4 employs a reverse transformation to

produce the resulting ciphertext. The 32 round keys are sequentially generated using

the key expansion algorithm based on the original 128-bit key. In the decryption

phase, a comparable structure is employed, but the order of round keys is reversed

[2].

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

217 | P a g e

Round Function

Assuming the input to the round function is represented as (X0, X1, X2, X3) ∈ (Z2
32)4

in a 32-bit space, and the round key is denoted as rk ∈ Z2
32 in the same 32-bit space,

the round function F can be stated as follows:

F(X0, X1, X2, X3) = (X1, X2, X3, X0⨁T(X1, X2, X3⨁rk)). (1)

Mixed substitution T

Z 2
32 → Z 2

32 represents a reversible transformation that consists of both a nonlinear

transformation τ and a linear transformation L. In simpler terms, it can be

represented as T(∙) = L(τ(∙)).

Transformation T, which is nonlinear in nature

τ is made up of four parallel S-boxes (S). Assuming A = (a0, a1, a2, a3) ∈ (Z2
8)4

represents the input to τ and B = (b0, b1, b2, b3) ∈ (Z2
8)4 represents the resulting

output, then the relationship can be expressed as follows:

B = (b0, b1, b2, b3) = τ(A) = (S(a0), S(a1), S(a2), S(a3)). (2)

Linear Transformation L

The 32-bit result generated by the nonlinear transformation τ serves as the input for

the linear transformation L. Assuming B ∈ Z2
32 represents the input to L and C ∈ Z2

32

is the resulting output, then the relationship can be described as follows:

C = L(B) = B⨁(B ⋘ 2)⨁(B ⋘ 10)⨁(B ⋘ 18)⨁(B ⋘ 24). (3)

Methodology

In the Python programming language, substitution tables (S-box) can be represented

in three ways. These are in the form of dictionary view (Sbox_dict), 1 (Sbox_Table1)

and 2 (Sbox_Table1) dimensional arrays. According to these methods of expression,

the methods of referring to these tables also differ.

According to the form of representation of the substitution table, the functions to

refer to them are as follows:

1. A reference function for a state expressed in a dictionary view:

def tau_dict(input: int) -> int:

 a = dict()

 b = dict()

 a[0] = input // 0x01000000

 a[1] = (input & 0x00ff0000) >> 16

 a[2] = (input & 0x0000ff00) >> 8

 a[3] = input % 0x100

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

218 | P a g e

 b[0] = Sbox_dict[a[0]]

 b[1] = Sbox_dict[a[1]]

 b[2] = Sbox_dict[a[2]]

 b[3] = Sbox_dict[a[3]]

 return (b[0] << 24) + (b[1] << 16) + (b[2] << 8) + b[3]

2. A reference function for a state expressed as a 1-dimensional array:

def tau1(input: int) -> int:

 a0 = input // 0x01000000

 a1 = (input & 0x00ff0000) >> 16

 a2 = (input & 0x0000ff00) >> 8

 a3 = input % 0x100

 b0 = Sbox_Table1[a0]

 b1 = Sbox_Table1[a1]

 b2 = Sbox_Table1[a2]

 b3 = Sbox_Table1[a3]

 return (b0 << 24) + (b1 << 16) + (b2 << 8) + b3

3. A reference function for a state expressed as a 2-dimensional array:

def tau2(a):

 b1 = Sbox_Table2[(a & 0xf0000000) >> 28][(a & 0x0f000000) >> 24]

 b2 = Sbox_Table2[(a & 0x00f00000) >> 20][(a & 0x000f0000) >> 16]

 b3 = Sbox_Table2[(a & 0x0000f000) >> 12][(a & 0x00000f00) >> 8]

 b4 = Sbox_Table2[(a & 0x000000f0) >> 4][(a & 0x0000000f) >> 0]

 return (b1 << 24) | (b2 << 16) | (b3 << 8) | (b4 << 0)

Using the following code, results were obtained to compare the time spent on these

expression methods and reference functions:

l2=2**32

t1=time.time()

for i in range(10000000):

 d=random.randint(0,l2)

 s_dict=tau_dict(d)

t2=time.time()

print(t2-t1)

t1=time.time()

for i in range(10000000):

 d=random.randint(0,l2)

 s1=tau1(d)

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

219 | P a g e

t2=time.time()

print(t2-t1)

t1=time.time()

for i in range(10000000):

 d=random.randint(0,l2)

 s2=tau2(d)

t2=time.time()

print(t2-t1)

The values of the time taken to refer the substitution table for 10,000,000 random

32-bit values using the above program code are shown in Table 1 below.

Table 1 The values of the time taken to refer the substitution table for 10,000,000

random 32-bit values

№ The representation method

of S_box

A reference function Time spent (sec)

1. dictionary view (Sbox_dict) def tau_dict(input: int) -> int 16.1635637283325

2. 1 dimensional arrays

(Sbox_Table1)

def tau1(input: int) -> int 12.3912270069122

3. 2 dimensional arrays

(Sbox_Table2)

def tau2(a) 14.3787536621093

The data in Table 1 indicates that employing a 1-dimensional array to represent

substitution tables in the Python programming language results in significantly less

time consumption compared to using a dictionary or a 2-dimensional array for

representation.

The cyclic left shift operation can also be expressed in different ways in the Python

programming language. These methods are mentioned below.

1. 1st method operation cyclic shift left

def left_shift_1(a: int, n: int) -> int:

 for i in range(n):

 a <<= 1

 if a // 0x100000000 == 1:

 a %= 0x100000000

 a += 1

 return a

2. 2nd method operation cyclic shift left

def left_shift_2(a:int, n:int):

 size=32

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

220 | P a g e

 n =n% 32

 return (a << n) | (a >> (size - n)) &0xffffffff

3. 3rd method operation cyclic shift left

def left_shift_2(a:int, n:int):

 size=32

 n =n% 32

 return (a << n) ^ (a >> (size - n)) &0xffffffff

4. MixColumns()

import time

def mixColumns(input):

 a = input // 0x01000000

 b = (input & 0x00ff0000) >> 16

 c = (input & 0x0000ff00) >> 8

 d = input % 0x100

 a1=mul2[a] ^ mul3[b] ^ c ^ d

 b1=a ^ mul2[b] ^ mul3[c] ^ d

 c1=a ^ b ^ mul2[c] ^ mul3[d]

 d1=mul3[a] ^ b ^ c ^ mul2[d]

 #print()

5. MixColumns() with Lut_table

def gmul(a, b):

 if b == 1:

 return a

 tmp = (a << 1) & 0xff

 if b == 2:

 return tmp if a < 128 else tmp ^ 0x1b

 if b == 3:

 return gmul(a, 2) ^ a

t1=time.time()

for i in range(100000000):

 mixColumns(0xA3B1BAC6)

t2=time.time()

print(t2-t1)

Table 2 shows the time taken by the above three options to perform a left-cycling

swipe operation on 100,000,000 random integers.

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

221 | P a g e

Table 2 Time taken to performs a cyclic shift left and Mixcolumns()

transformation of 100,000,000 random 32-bit integers

No. The representation method of S_box Time spent (sec)

1. 1st method 403.48764538764954

2. 2nd method 142.70483493804932

3. 3rd method 142.435124874115

4. MixColumns() 687.4968481063843

5. MixColumns() with Lut_table 134.1191828250885

The line MixColumns() with Lut_table describes the time taken to display the results

of MixColumns using a pre-calculated table.

Table 2 that it is appropriate to use the 3rd method in the Python programming

language to perform the cyclic shift operation to the left. The most time was spent

on method 1. A little less time was spent in method 3 compared to method 2 due to

the or and xor operations. In Table 3.2 above, you can see that the MixColumns()

rendering is faster than the cyclic scroll left rendering when using precomputed

tables.

Below are the main functions of the SM4 encryption algorithm written in the Python

programming language.

Python code for L transformation:

def L (B: int) -> int:

 return B ^ left_shift_3(B, 2) ^ left_shift_3(B, 10) ^ left_shift_3(B, 18)

^left_shift_3(B, 24)

Python code for T transformation:

def T(a: int) -> int:

 return L(tau1(a))

Python code for L′ transformation:

def L_key(B: int) -> int:

 return B ^ left_shift_3(B, 13) ^ left_shift_3(B, 23)

Python code for T′ transformation:

def T_key(a: int) -> int:

 return L_key(tau1(a))

Python code of the key generation algorithm:

def key_generation(MK: tuple) -> list:

 K = dict()

 K[0] = MK[0] ^ FK[0]

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

222 | P a g e

 K[1] = MK[1] ^ FK[1]

 K[2] = MK[2] ^ FK[2]

 K[3] = MK[3] ^ FK[3]

 for i in range(32):

 K[i+4] = K[i] ^ T_key(K[i+1] ^ K[i+2] ^ K[i+3] ^ CK[i])

 rk = list(K.values())

 return list(rk[4:])

Python code for F transformation:

def F(X: list, rk: int) -> list:

 return X[0] ^ T(X[1] ^ X[2] ^ X[3] ^ rk)

Code of the encryption process in Python:

def encrypt_function(X: tuple, rk: tuple) -> tuple:

 X_list = list(X)

 for i in range(32):

 X_list.append(F(X_list[i:i+4], rk[i]))

 Y = (X_list[35], X_list[34], X_list[33], X_list[32])

 return Y

Code of the decryption process in Python:

def decrypt_function(X: tuple, rk: tuple) -> tuple:

 X_list = list(X)

 for i in range(32):

 X_list.append(F(X_list[i:i+4], rk[31-i]))

 Y = (X_list[35], X_list[34], X_list[33], X_list[32])

 return Y

The time taken to encrypt and decrypt 100,000 blocks of plaintext using this software

code was compared with other implementations. Table 3.3 shows the comparison

results.

Table 3.3 The time it takes to encrypt and decrypt 100,000 blocks

No. Implementation Time spent (sec) (SM4)

Encryption process Decryption process

1. [77] 36.23312 36.06769

2. [85] 9.26895 10.14109

3. [84] 6.723578 6.760374

4. Our method (SM4) 5.526601 5.759675

5. SM4_Mix 18.53468 18.74289

5. SM4_Mix (Lut_table) 5.234876 5.482364

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

223 | P a g e

From the results in Table3.3, we can see that the implementation method proposed

in this work has a time-efficient performance compared to other proposed

implementation methods.

Conclusion

In this work, the methods of implementation of the SM4 encryption algorithm

transformations in the Python programming language were studied. It was found that

the implementation of S-box in the form of a 1-dimensional table allows to achieve

efficiency in terms of time. An efficient method has also been found for the cyclic

left shift operation. The results obtained for the code written in the Python

programming language for the encryption algorithm were compared with other

implementation options in terms of the time spent on encryption and decryption, and

it was found that this implementation method allows to achieve higher efficiency in

terms of time.

References

1. GM/T 0002-2012: SM4 Block Cipher Algorithm, “State cryptography

administration of the People’s Republic of China,” March 2012.

 View at: Google Scholar

2. R. H. Tse, W. K. Wong, and M.-J. O. Saarinen, “The SM4 blockcipher

algorithm and its modes of operations,” April 2018, Internet Engineering Task

Force (IETF) https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10.

 View at: Google Scholar

3. ISO/IEC 18033-3: 2010/AMD1:2021, “Information technology-security

techniques-encryption algorithms-part3: block ciphers-amendment1: SM4,”

June 2021, https://www.iso.org/standard/81564.html.

 View at: Google Scholar

4. S. Gueron, “Intel advanced encryption standard (AES) new instructions set,”

May 2010, Intel White Paper, Rev, 3:1-81.

 View at: Google Scholar

5. X. Miao, C. Guo, M. Wang, and W. Wang, “How fast can SM4 be in software,”

in Information Security and Cryptology, Yi Deng and M. Yung, Eds., vol.

13837 of Lecture Notes in Computer Science, pp. 3–22, Springer Nature

Switzerland, Cham, 2023.

 View at: Publisher Site | Google Scholar

https://scholar.google.com/scholar_lookup?title=State%20cryptography%20administration%20of%20the%20People%E2%80%99s%20Republic%20of%20China&author=GM%2FT%200002-2012%3A%20SM4%20Block%20Cipher%20Algorithm&publication_year=March%202012
https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://scholar.google.com/scholar_lookup?title=The%20SM4%20blockcipher%20algorithm%20and%20its%20modes%20of%20operations&author=R.%20H.%20Tse&author=W.%20K.%20Wong&author=M.-J.%20O.%20Saarinen&publication_year=April%202018
https://www.iso.org/standard/81564.html
https://scholar.google.com/scholar_lookup?title=Information%20technology-security%20techniques-encryption%20algorithms-part3%3A%20block%20ciphers-amendment1%3A%20SM4&author=ISO%2FIEC%2018033-3%3A%202010%2FAMD1%3A2021&publication_year=June%202021
https://scholar.google.com/scholar_lookup?title=Intel%20advanced%20encryption%20standard%20(AES)%20new%20instructions%20set&author=S.%20Gueron&publication_year=May%202010
https://doi.org/10.1007/978-3-031-26553-2_1
https://scholar.google.com/scholar_lookup?title=How%20fast%20can%20SM4%20be%20in%20software&author=X.%20Miao&author=C.%20Guo&author=M.%20Wang&author=W.%20Wang&publication_year=2023

Proceedings of International Conference on Modern Science and Scientific Studies
Hosted online from Paris, France.
Date: 19th April, 2024
ISSN: 2835-3730 Website: econferenceseries.com

224 | P a g e

6. Software.Intel.Com, “Haswell new instruction

descriptions,” http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-

instruction-descriptions-now-available/.

 View at: Google Scholar

7. Intel Corporation, “Intel C++ compiler classic developer guide and

reference,” https://www.intel.com/content/www/us/en/docs/intrinsics-

guide/index.html.

 View at: Google Scholar

8. L. Wang, Z. Gong, Z. Liu, J. Chen, and H. Fu, “Fast software implementation

of SM4 based on tower field,” Journal of Cryptologic Research, vol. 9, no. 6,

pp. 1081–1098, 2022.

 View at: Google Scholar

9. X. Zhang, H. Guo, X. Zhang, C. Wang, and J. Liu, “Fast software

implementation of SM4,” Journal of Cryptologic Research, vol. 7, no. 6, pp.

799–811, 2020.

 View at: Google Scholar

10. H. Lang, L. Zhang, and W. Wu, “Fast software implementation of

SM4,” Journal of University of Chinese Academy of Sciences, vol. 35, no. 2,

pp. 180–187, 2018.

 View at: Google Scholar

11. J. Zhang, M. Ma, and P. Wang, “Fast implementation for SM4 cipher algorithm

based on bit-slice technology,” in Smart Computing and Communication.

SmartCom 2018, M. Qiu, Ed., vol. 11344 of Lecture Notes in Computer

Science, pp. 104–113, Springer, Cham, 2018.

 View at: Publisher Site | Google Scholar

12. http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=7803DE42D3BC5E80

B0C3E5D8E873D56A)

13. https://github.com/CCWUCMCTS/SM4/blob/main/SM4.py

14. https://github.com/windard/sm4/blob/master/Python/sm4.py

http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
https://scholar.google.com/scholar_lookup?title=Haswell%20new%20instruction%20descriptions&author=Software.Intel.Com
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://scholar.google.com/scholar_lookup?title=Intel%20C%2B%2B%20compiler%20classic%20developer%20guide%20and%20reference&author=Intel%20Corporation
https://scholar.google.com/scholar_lookup?title=Fast%20software%20implementation%20of%20SM4%20based%20on%20tower%20field&author=L.%20Wang&author=Z.%20Gong&author=Z.%20Liu&author=J.%20Chen&author=H.%20Fu&publication_year=2022
https://scholar.google.com/scholar_lookup?title=Fast%20software%20implementation%20of%20SM4&author=X.%20Zhang&author=H.%20Guo&author=X.%20Zhang&author=C.%20Wang&author=J.%20Liu&publication_year=2020
https://scholar.google.com/scholar_lookup?title=Fast%20software%20implementation%20of%20SM4&author=H.%20Lang&author=L.%20Zhang&author=W.%20Wu&publication_year=2018
https://doi.org/10.1007/978-3-030-05755-8_11
https://scholar.google.com/scholar_lookup?title=Fast%20implementation%20for%20SM4%20cipher%20algorithm%20based%20on%20bit-slice%20technology&author=J.%20Zhang&author=M.%20Ma&author=P.%20Wang&publication_year=2018

