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Abstract 

In some bacterial infections, the immune system cannot destroy the invading 

pathogen. In these cases, the invading pathogen is successful in creating a favorable 

environment for survival and continuation in the host organism. (1) effective 

violation of the immune response; and (2) protection against immune cells and 

molecules. S. aureus releases several proteins that contain coagulases and toxins that 

trigger abscess formation and stagnation. If staphylococcal abscesses are not 

surgically drained and treated with antibiotics, the spread infection and septicemia 

will lead to death. In this regard, this document develops a simple mathematical 

model of abscess formation, which includes characteristics that we consider 

important for abscess formation. Our goal is to create a mathematical model that 

reproduces some of the characteristics and behaviors observed in the process of 

abscess formation. No clinical trials have been conducted to guide the surgeon in the 

optimal technique of drainage of the Backgroundpilonidal abscess. The purpose of 

our study was to check whether the location of the incision affects wound 

healing.The methods of selectronic recordings from the surgical database at our 200-

bed District General Hospital were examined from January 2003 to February 2010 

for surgical techniques (midline and lateral) for patients with incision and drainage 

for acute pilonidal abscess. These patients were admitted from the emergency 

department with a pilonidal abscess, underwent operative drainage and returned for 

observation. The main outcome measure was the time to heal the injury.Results 243 

pilonidal abscess drained, with 134 lateral and 74 middle linear incisions. All 

patients underwent a simple longitudinal incision. No patient has undergone roofing, 

marsupialization or closure. 48 patients with midline drainage who returned for 

observation matched the results of gender, age and microbiology culture with 

patients who had undergone lateral drainage. Almost all are drained under general 

anesthesia, on average 1 day after surgery. The total length of the observation was 

the same in both groups. . Untreated abscesses have been observed for the same 
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period of time, regardless of the type of incision. Abscesses treated after cutting the 

middle line lasted about 3 weeks longer than those drained through the lateral 

incision . 

 

Keywords: Abscess formation, fibrin network, partial differential equation, 

computational modeling 

 

Objective 

This article developed computational models based on differential equations, 

capable of reproducing some of the features observed in the process of abscess 

formation. The study consisted of analyzing the spatial-temporal behavior of 

bacteria, coagulation factors fibrin, toxins and neutrophils. These analyses were 

important and helped to understand how modeled processes interact, the effects of 

the inclusion of specific processes, among other factors. This article shows that the 

use of the G function in conditions of population growth and distribution is one of 

the characteristics that allow us to reproduce some of the main aspects of the abscess 

formation process in mathematical models . Another important feature was the 

formation of the fibrin network. The Fibrin network protected bacteria from the 

immune response given by neutrophils. The formation of the fibrin network has been 

modeled taking into account the production of coagulation factors and the interaction 

of these factors with the bacterial colony. More tests and model improvements may 

be needed, but this early model was able to replicate some of the features found in 

the abscess, such as: the formation of a fibrin network around bacterial colonies and 

the accumulation of necrotic neutrophils and living neutrophils. abscess area. Based 

on the results of the simulation and the analyzes carried out so far, we believe that 

the fibrin network is important for the continuation of bacteria in the abscess lesion, 

along with the mechanisms used to produce toxins that bacteria use to kill 

neutrophils and to avoid phagocytosis. 

 

MATERIALS & METHODS 

       ∂u∂t= fg+ D ∇ ⋅ ( g∇ u ) 

u ( x , 0 ) =u0,∂u ( . , t )∂n→∣∣∂Ō= 0 ,    ( 1 ) 

where u is a variable that refers to a given population, the term f is a function that 

models the growth of u and the term D∇·(g∇u) models the nonlinear diffusion of u. 

Function g is equivalent to the g function proposed in (Painter and Sherratt, 2003). 

This function was originally developed to model the movement of interacting cell 

https://www.frontiersin.org/articles/10.3389/fmicb.2018.01355/full#B34
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populations (Painter and Sherratt, 2003). We extended it to model interactions that 

also occur in other cellular processes. For example, we use the g function to model 

interactions that occur during bacterial growth or neutrophil migration. 

The g function is used to account for different interaction strengths between the 

populations and the effects of these in processes of growth, phagocytosis, migration, 

death and diffusion. 

The g function is defined as the heaviside function of g¯¯¯�¯: 

 

 

g(w)={g¯¯¯(w), 0≤g¯¯¯(w)≤1 0,   otherwise.  

 

Function g¯¯¯(w)�¯(�) is defined as: 

where w is a term that models the interactions between distinct populations 

and total is a parameter that denotes the maximum population supported in a 

discretized region of the domain. In this work, we consider that the value of total is 

constant and is equal to 1 for all discretized regions. 

The interactions between the populations can be stimulatory or inhibitory. In this 

paper, we consider only inhibitory interactions in the w term. To illustrate the 

meaning of w, consider, for example, a system with two types of 

populations: u and v. The interactions that each population has with the other one 

are modeled by the w term. Therefore, the w term is defined for each distinct 

population in the system. For example, the w for the u population is defined as: 

 

wu=wuuu+wvuv 

where wuu u is the inhibition that u exerts on itself and wvu v is the inhibition 

that v exerts on u. These inhibitory relations will affect all processes 

in u dynamics. wuu and wvu are constant parameters. We call these parameters 

“weights” to refer to the fact that they control the strength of the inhibition that one 

population exerts on the other. 

The g¯¯¯�¯ function for the u population is 

 

g¯¯¯(wu)=1−wu 

 

wv=wvvv+wu,vu 

 

 

https://www.frontiersin.org/articles/10.3389/fmicb.2018.01355/full#B34
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RESULTS & DISCUSSION 

In this article, we have built a mathematical model of abscess formation in stages. 

Interactions between Model components . It should be noted that the intensity of a 

certain inhibitory relationship depends on the concentration of cellular species that 

carry out inhibition. 

 

Conclusions 

In this article, they developed computational models based on differential 

equations.They were able to reproduce some of the characteristics observed in the 

process of abscess formation.The study consisted of analyzing the spatial-temporal 

behavior of bacteria, coagulation factors, fibrin, toxins and neutrophils. These 

analyses are important and help to understand how modeled processes interact, the 

effects of the inclusion of specific processes, among other factors.This article shows 

that the use of the G function in conditions of population growth and distribution is 

one of the characteristics that allow us to reproduce some of the main aspects of the 

abscess formation process in mathematical models . Another important feature was 

the formation of the fibrin network. The Fibrin network protected bacteria from the 

immune response given by neutrophils. The formation of the fibrin network has been 

modeled taking into account the production of coagulation factors and the interaction 

of these factors with the bacterial colony. More tests and model improvements may 

be needed, but this early model was able to replicate some of the features found in 

the abscess,Based on the results of the simulation and the analysis carried out so far, 

it turns out that the fibrin network is important for the continuation of bacteria in the 

abscess lesion along with the mechanisms used to produce toxins that bacteria use 

to kill neutrophils and to avoid phagocytosis. 
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