Hosted online from Plano, Texas, USA.

Date: 1st June, 2023 ISSN: 2835-3196 Website: econferenceseries.com

ПОЛУПРОВОДНИКОВЫЙ СЕНСОР АММИАКА НА ОСНОВЕ ТіО2 и Fe_2O_3

Абдурахманов И.Э.

Насимов А.М.

Равінанов Р.А.

Исмоилов Э.Х.

Абдухалилов С. С.

Хайруллаев Н. Ф.

Холмурзаев Ф. Ф.

Самаркандский государственный университет имени Шарофа Рашидова, г. Самарканд.ilkhom.abdurakhmanov85@mail.ru

объектами выделения аммиака являются холодильные установки, животноводческие фермы, предприятия по производству HNO₃, солей аммония и коксохимические заводы [1].

Наиболее правильным и корректным решениям задач экспрессного и точного определения содержания газов (в частности аммиака) в воздухе и технологических газах является применение простых доступных полупроводниковых сенсоров [2]. Полупроводниковые сенсоры аммиака становятся основными приборами, позволяющими оперативно проводить мониторинг окружающей среды и технологических газов [3]. В связи с этим, разработка высокоэффективных методов и полупроводниковых сенсоров определения аммиака в объектах окружающей среды становится актуальной задачей техники безопасности, аналитической химии и экологии.

Методы исследования и полученные результаты. Экспериментально установленные зависимости сигнала сенсора от содержания детектируемой примеси являются градуировочными характеристиками сенсора. характеристика сенсора Градуировочная аммиака определялась пропускании через разработанный сенсор парогазовой смеси с содержанием аммиака в широком интервале его концентраций. Опыты проводились при обычных условиях (температуре 20° C, давлении окружающей среды 745 мм. рт. ст. и относительной влажности воздуха 60 %). В проведенных экспериментах каждая проверки ПО диапазону измерения точка

Proceedings of International Conference on Educational Discoveries and Humanities Hosted online from Plano, Texas, USA. Pate: 15t lune, 2022

Date: 1st June, 2023

ISSN: 2835-3196 **Website:** econferenceseries.com

характеризовалась шестью значениями: три- при прямом и три-при обратном измерения. Аналитический сигнал сенсоров контролировался цифровым вольтметром В7-35 после установления постоянного значения (не менее 1 мин после подачи в прибор стандартной смеси). В ходе опытов изучались градуировочная характеристика сенсора аммиака на основе оксида титана. Для увеличения чувствительности к аммиака на пленку оксида титана наносили оксид железа, которой является активным и селективным катализатором процесса окисления аммиака кислородом воздуха. Результаты определения зависимости сопротивления ГЧМ от содержание аммиака в газовой смеси показалы, что в зависимости от содержания легирующего компонента (Fe_2O_3) изменяются свойства ГЧМ в целом. При увеличении концентрации легирующего сопротивление компонента пленок уменьшается.

Более чувствительные сенсоры аммиака образуются при использовании смешанных оксидов титана и железа. Нанесенный на поверхность пленки $TiO_2+10\%\,Fe_2O_3$ при концентрации аммиака в смеси 1000 мг/м³ приводит к уменьшению сопротивления ГЧМ в 5 раз (от 2328 до 461). В изученном диапазоне концентраций зависимость сопротивления полупроводникового сенсора от количества аммиака в смеси, как правило, нелинейно. Наиболее заметное уменьшение сопротивления ГЧМ наблюдается при начальных концентрациях аммиака в смеси. С ростом концентрации сопротивление ГЧМ уменьшается. Это затрудняет использование разработанных сенсоров для создания газоаналитических приборов. Из полученных данных следует, что в широком интервале концентраций (20-1000 мг/м³) зависимость сигнала полупроводникового сенсора от концентрации аммиака в ПГС имеет прямолинейный характер.

Анализ полученных данных показывает, что ГЧМ на основе SiO_2/TiO_2 и $SiO_2/TiO_2-1\%$ Fe_2O_3 характеризуется невысокой чувствительностью по аммиаку. Порог чувствительности сенсоров, на основе тонкопленочной нелегированной двуокиси титана составляет 0,01% NH₃ в воздухе. Резкое повышение величины газовой чувствительности наблюдается для образца с содержанием оксида железа 5-10% Полупроводниковые сенсоры на основе $SiO_2/TiO_2-5\%$ Fe_2O_3 и $SiO_2/TiO_2-10\%$ Fe_2O_3 могут регистрировать газовые примеси NH_3 на уровне Π ДКр.3 и ниже. Минимальная концентрация

Proceedings of International Conference on Educational Discoveries and Humanities Hosted online from Plano, Texas, USA.

Date: 1st June, 2023 ISSN: 2835-3196

Website: econferenceseries.com

аммиака, которая может быть зафиксирована полупроводниковым сенсором на основе SiO_2 - TiO_2 +10% Fe_2O_3 , около 5,0 мг/м³. Исследована зависимость сигнала сенсора от концентрации аммиака в воздухе, при температуре опыта 350°С. Выявлен линейный участок сигнала, обеспечивающий определение содержания аммиака в широком интервале его концентрации. Кривая зависимости газовой чувствительности ($\Delta \sigma / \sigma_{возд}$) данного сенсора от концентрации аммиака в диапазоне концентраций последнего от 10 до 1000 $M\Gamma/M^3$ носит прямолинейный характер (рис.6.6), а величина S изменяется в диапазоне от 0,01 до 0,17. Селективность полупроводникового сенсора аммиака определяли в присутствии водорода, оксида углерода и метана. Селективность сенсоров по аммиаку определялось при температуре сенсора 350^{0} С и давлении 730 ± 10 мм рт. ст. с применением стандартных газовых смесей, состав которых приведен в таблице 1. Таблица 1.

Состав и параметры поверочных газовых смесей, использованных при определении селективности сенсора аммиака

	*				
№	Состав ПГС	Содержание компонента, мг/м3.			
п/п		NH ₃	H_2	CO	CH ₄
1	NH ₃ + воздух	356,0±0,6	-	-	-
2	NH ₃ +H ₂ +воздух	356,0±1,0	460,0±1,8	-	-
3	NH ₃ +CO+воздух	356,0±0,8	-	380,0±2,5	-
4	NH ₃ +CH ₄ +воздух	356,0±1,0	-	-	450,0±1,5

На вход ППС подавали смесь№1 (NH₃+воздух) в течение 5 мин, фиксировали цифровым показания вольтметром, затем подавали (NH₃+H₂+воздух) и через 5 мин повторно фиксировали показания цифрового вольтметра. Аналогичным образом были получены сигналы для смеси №3 (NH₃+CO+воздух) и №4 (NH₃+CH₄+воздух). Число повторных измерений для каждой стандартной газовой смеси равно 5. Средние результаты, полученные при установлении селективности ППС - NH₃, представлены на рис.1.

Как следует из приведенных экспериментальных данных (рис 1.) при определении аммиака в присутствии СО, Н2 СН4 из исследованных ГЧМ наиболее селективным является сенсор на основе SiO₂/TiO₂+10%Fe₂O₃. В присутствии $SiO_2/TiO_2+10\%$ Fe_2O_3 при температуре 350° C наличие в анализируемой смеси оксида углерода (380 мг/м 3), водорода (460 мг/м 3) и метана (450 мг/м³) не влияет на значение выходного сигнала сенсора

Proceedings of International Conference on Educational Discoveries and Humanities Hosted online from Plano, Texas, USA.

Date: 1st June, 2023 ISSN: 2835-3196

Website: econferenceseries.com

аммиака. Из приведённых данных следует, что разработанный сенсор в изученном интервале концентраций позволяет селективно определят NH₃.

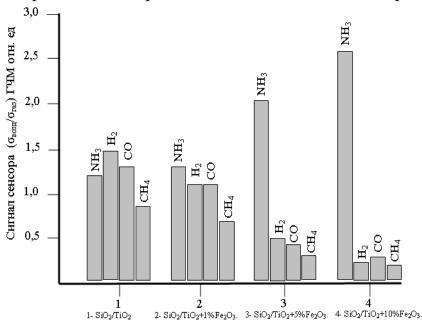
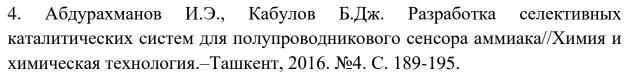


Рис. 2. Результаты изучение селективности сенсоров на основе оксидов титана и железа по аммиаку.

Таким образом, в результате проведенных опытов разработан селективный полупроводниковый сенсор, обеспечивающий экспрессное определение аммиака в атмосферном воздухе и технологических газах в присутствии СО, интервале концентраций. Разработанные широком ИХ полупроводниковые сенсоры аммиака ПО селективности воспроизводимости нисколько не уступают известным зарубежным аналогам, сохранив при этом следующие характеристики: экспрессность, портативность, простоту в эксплуатации и изготовлении.

Список литературы

- 1. Анарганикум. В двух томах. Том.1. Под.ред. Л.Кольдиц. Москва, Мир.1984. С.532.
- Л. А.Полупроводниковые металлооксидные сенсоры для 2. Обвинцева определения химически активных газовых примесей в воздушной среде // Poc. хим. ж. (Ж. Poc. хим. об-ва им. Д.И. Менделеева), 2008, т. LII, № 2 С.113-121.



Proceedings of International Conference on Educational Discoveries and Humanities Hosted online from Plano, Texas, USA.

Date: 1st June, 2023 ISSN: 2835-3196

Website: econferenceseries.com

3. Синёв И.В. и др. Влияние предварительного циклического изменения температуры на распознавание тонкопленочными полупроводниковыми сенсорами наличия примеси паров аммиака в воздухе //Тезисы докладов VIII конференции всероссийской молодых ученых **‹**‹ Наноэлектроника, нанофотоника и нелинейная физика», 3-5 сентября 2013 г., г. Саратов, Саратов: Изд-во Саратовского университета. – 2013. – С. 209-210

